On the Rate of Convergence of Fourier–Legendre Series of Functions of Bounded Variation

R. BOJANIC AND M. VUILLEUMIER

Department of Mathematics, Ohio State University, Columbus, Ohio 43210 Communicated by Oved Shisha Received October 22, 1979

1. INTRODUCTION

Let $P_n(x)$ be the Legendre polynomial of degree *n* normalized so that $P_n(1) = 1$. Let *f* be a function of bounded variation on [-1, 1] and

$$S_n(f,x) = \sum_{k=0}^n a_k(f) P_k(x)$$

the *n*th partial sum of the Fourier-Legendre series of f. One has

$$a_k(f) = (k + \frac{1}{2}) \int_{-1}^{1} f(t) P_k(t) dt$$

and

$$S_n(f, x) = \int_{-1}^{1} f(t) K_n(x, t) dt,$$

where

$$K_n(x, t) = \sum_{k=0}^n (k + \frac{1}{2}) P_k(x) P_k(t)$$

or

$$K_n(x,t) = \frac{n+1}{2} \left(\frac{P_{n+1}(x) P_n(t) - P_{n+1}(t) P_n(x)}{x-t} \right).$$

As is well known, the Fourier-Legendre series of a function f of bounded variation on [-1, 1] converges at every point $x \in (-1, 1)$ to $\frac{1}{2}(f(x+0)+(f(x-0)))$ (see [1, The Series of Legendre's Coefficients,

pp. 388-395; 2; 3]). We are interested here in finding an estimate for the rate of convergence of the sequence $S_n(f, x)$ to $\frac{1}{2}(f(x+0) + f(x-0))$. Some results in that direction were obtained in [4, p. 76] for functions of bounded variation which are either continuous or differentiable in a neighborhood of the point x.

The main result of this paper can be stated as follows.

THEOREM 1. Let f be a function of bounded variation on [-1, 1]. Then, for $x \in (-1, 1)$ and $n \ge 2$

$$|S_{n}(f,x) - \frac{1}{2}(f(x+0) + f(x-0))| \\ \leq \frac{28(1-x^{2})^{-3/2}}{n} \sum_{k=1}^{n} V_{x-(1+x)/k}^{x+(1-x)/k}(g_{x}) + \frac{(1-x^{2})^{-1}}{\pi n} |f(x+0) - f(x-0)|,$$
(1.1)

where

$$g_{x}(t) = f(t) - f(x - 0), \quad -1 \le t < x$$

= 0, $t = x$ (1.2)
= $f(t) - f(x + 0), \quad x < t \le 1$

and $V_a^b(g)$ is the total variation of g on [a, b].

If f is a continuous function of bounded variation the inequality (1.1) becomes

$$|S_n(f,x) - f(x)| \leq \frac{28(1-x^2)^{-3/2}}{n} \sum_{k=1}^n V_{x-(1+x)/k}^{x+(1-x)/k}(f).$$
(1.3)

The right-hand side of (1.1) converges to zero as $n \to \infty$ since continuity of $g_x(t)$ at t = x implies that

$$V_{x-\delta}^{x+\delta}(g_x) \to 0(\delta \to 0+).$$

Results of this type for the Fourier series of a 2π -periodic function of bounded variation on $[-\pi, \pi]$ were proved in [5].

As far as the precision of estimates (1.1) and (1.3) is concerned, we can show that (1.3) cannot be improved asymptotically by considering the Fourier-Legendre expansion of the function $f(x) = |x|^{1/2}$ at x = 0. We have for all $x \in (-1, 1)$,

$$f(x) = |x|^{1/2} = 2 \sum_{m=0}^{\infty} (-1)^{m+1} \frac{4m+1}{(4m-1)(4m+3)} P_{2m}(x)$$

and so,

$$S_n(f,0) - f(0) = 2 \sum_{m=n+1}^{\infty} (-1)^m \frac{4m+1}{(4m-1)(4m+3)} P_{2m}(0).$$

Since

$$P_{2m}(0) = (-1)^m \frac{1 \cdot 3 \cdot 5 \dots (2m-1)}{2 \cdot 4 \cdot 6 \dots (2m)}$$

it follows that

$$S_n(f,0) - f(0) = 2 \sum_{m=n+1}^{\infty} \frac{4m+1}{(4m-1)(4m+3)} \frac{1 \cdot 3 \cdot 5 \dots (2m-1)}{2 \cdot 4 \cdot 6 \dots (2m)}$$

$$\geqslant \sum_{m=n+1}^{\infty} \frac{1}{(4m+3)\sqrt{m}}$$

$$\geqslant \frac{1}{7} \sum_{m=n+1}^{\infty} \frac{1}{m^{3/2}}$$

$$\geqslant \left(\frac{1}{7\sqrt{2}}\right) \frac{1}{\sqrt{n}}.$$

On the other hand, from (1.3) follows that

$$|S_n(f,0) - f(0)| \leq \frac{28}{n} \sum_{k=1}^n V_{-1/k}^{1/k}(f) \leq \frac{56}{n} \sum_{k=1}^n V_0^{1/k}(f)$$

Since $V_0^{\delta}(f) = \delta^{1/2}$, we have

$$|S_n(f,0) - f(0)| \leq \frac{56}{n} \sum_{k=1}^n \frac{1}{\sqrt{k}} \leq \frac{102}{\sqrt{n}}$$

Hence, for the function $f(x) = |x|^{1/2}$ we have

$$\frac{1}{7\sqrt{2}\sqrt{n}} \leq |S_n(f,0) - f(0)| \leq \frac{102}{\sqrt{n}}.$$

A look at the proof of Theorem 1 shows that the following more general result is true.

THEOREM 2. Let $K_n(x, t)$ be a continuous function of two variables on $[a, b] \times [a, b]$ and let L_n be the operator which transforms a function f of bounded variation on [a, b] into the function

$$L_n(f,x) = \int_a^b f(t) K_n(x,t) dt, \qquad x \in [a,b].$$

If, for a fixed $x \in (a, b)$ and $n \ge 1$, the kernel $K_n(x, t)$ satisfies conditions

(i)
$$\left| \int_{a}^{x} K_{n}(x,\tau) d\tau - \frac{1}{2} \right| \leq \frac{A(x)}{n} \text{ and } \left| \int_{x}^{b} K_{n}(x,\tau) d\tau - \frac{1}{2} \right| \leq \frac{A(x)}{n},$$

(ii) $\int_{x-(x-a)/n}^{x+(b-x)/n} |K_{n}(x,\tau)| d\tau \leq B(x),$
(iii) $\left| \int_{a}^{t} K_{n}(x,\tau) d\tau \right| \leq \frac{C(x)}{n(x-t)} (a \leq t < x < b) \text{ and}$
 $\left| \int_{t}^{b} K_{n}(x,\tau) d\tau \right| \leq \frac{C(x)}{n(t-x)} (a < x < t \leq b),$

where A(x), B(x) and C(x) are positive functions on (a, b), then there exists a positive number M(f, x), depending only on f and x, such that

$$|L_n(f,x) - \frac{1}{2}(f(x+0) + f(x-0))| \leq \frac{M(f,x)}{n} \sum_{k=1}^n V_{x-(x-a)/k}^{x+(b-x)/k}(g_x),$$

where, as before,

$$g_x(t) = f(t) - f(x - 0), \qquad a \le t < x$$
$$= 0, \qquad t = x$$
$$= f(t) - f(x + 0), \qquad x < t \le b.$$

2. Lemmas

The proof of Theorem 1 is based on a number of properties of Legendre polynomials. These properties are listed and some of them proved in this section.

LEMMA 1. We have

$$|P_n(x)| \leq \left(\frac{2}{\pi}\right)^{1/2} (1-x^2)^{-1/2} n^{-1/2}, \qquad x \in (-1,1),$$
(2.1)

$$\left| \int_{\alpha}^{\beta} P_{n}(t) dt \right| \leq \frac{4\sqrt{2\pi}}{(2n+1)(n-1)^{1/2}}, \qquad n \geq 2, \, \alpha, \, \beta \in [-1, \, 1], \quad (2.2)$$

$$\int_{x}^{1} K_{n}(x,t) dt = \frac{1}{2} - \frac{1}{2} P_{n}(x) P_{n+1}(x), \qquad (2.3)$$

$$\int_{-1}^{x} K_{n}(x,t) dt = \frac{1}{2} + \frac{1}{2} P_{n}(x) P_{n+1}(x).$$
(2.4)

Proof of Lemma 1. Most of the properties (2.1)–(2.4) are well known. Inequality (2.1) can be found in [4, p. 28] or [6, p. 163]. Inequality (2.2) is a consequence of the inequality

$$\left|\int_{x}^{1} P_{n}(t) dt\right| \leq \frac{8}{(2n+1)(2(n-1))^{1/2}} \int_{0}^{\infty} e^{-t^{2}} dt,$$

which can be found in [4, p. 72].

As for the proof of (2.3), observe that

$$(2n+1) P_n(t) = P'_{n+1}(t) - P'_{n-1}(t)$$

and consequently

$$\int_{x}^{1} K_{n}(x,t) dt = \frac{1}{2} \sum_{k=0}^{n} (2k+1) P_{k}(x) \int_{x}^{1} P_{k}(t) dt$$
$$= \frac{1-x}{2} + \frac{1}{2} \sum_{k=1}^{n} P_{k}(x) (P_{k+1}(t) - P_{k-1}(t)) |_{x}^{1}$$

Since $P_{k+1}(1) - P_{k-1}(1) = 0$, it follows that

$$\int_{x}^{1} K_{n}(x,t) dt = \frac{1-x}{2} - \frac{1}{2} \sum_{k=1}^{n} P_{k}(x)(P_{k+1}(x) - P_{k-1}(x))$$
$$= \frac{1-x}{2} + \frac{1}{2} \sum_{k=1}^{n} (P_{k-1}(x) P_{k}(x) - P_{k}(x) P_{k+1}(x))$$
$$= \frac{1-x}{2} + \frac{1}{2} P_{0}(x) P_{1}(x) - \frac{1}{2} P_{n}(x) P_{n+1}(x).$$

The proof of formula (2.4) is similar.

LEMMA 2. For $x \in (-1, 1)$ and $n \ge 2$

$$\int_{x-(1+x)/n}^{x+(1-x)/n} |K_n(x,t)| \, dt \leqslant \frac{4}{1-x^2}.$$
(2.5)

Proof of Lemma 2. Using (2.1) we find that

$$|K_n(x,t)| = \left| \sum_{k=0}^n (k+\frac{1}{2}) P_k(x) P_k(t) \right|$$

$$\leq \frac{1}{2} + \frac{3n}{\pi (1-x^2)^{1/2} (1-t^2)^{1/2}}$$

and it follows that

$$\int_{x-(1+x)/n}^{x+(1-x)/n} |K_n(x,t)| dt$$

$$\leq \frac{1}{n} + \frac{3n}{\pi(1-x^2)^{1/2}} \int_{x-(1+x)/n}^{x+(1-x)/n} \frac{dt}{(1-t^2)^{1/2}}.$$
(2.6)

To evaluate the integral on the right-hand side of (2.6) suppose first that $0 \le x < 1$. Then

$$\int_{x-(1+x)/n}^{x+(1-x)/n} \frac{dt}{(1-t^2)^{1/2}} = \theta_2 - \theta_1,$$

where $\cos \theta_2 = x - (1 + x)/n$, $\cos \theta_1 = x + (1 - x)/n$. If $n \ge 2$ and $0 \le x < 1$, we have $\cos \theta_2 \ge -\frac{1}{2}$, which means that $0 < \theta < 2\pi/3$.

To estimate $\theta_2 - \theta_1$, observe that by the mean-value theorem,

$$\cos\theta_1 - \cos\theta_2 = (\theta_2 - \theta_1) \sin\xi_2$$

where $\theta_1 < \xi < \theta_2$.

If $0 < \xi < \pi/3$ and $n \ge 2$ we have

$$\sin \xi \ge \sin \theta_1 = (1 - \cos \theta_1)^{1/2} (1 + \cos \theta_1)^{1/2}$$
$$\ge \left((1 - x) \left(1 - \frac{1}{n} \right) \right)^{1/2} (1 + x)^{1/2}$$
$$\ge \frac{1}{\sqrt{2}} (1 - x^2)^{1/2}.$$

If $\pi/3 \leq \xi \leq 2\pi/3$, we have

$$\sin \xi \ge \frac{\sqrt{3}}{2} \ge \frac{1}{\sqrt{2}} \ge \frac{1}{\sqrt{2}} \ge \frac{1}{\sqrt{2}} (1 - x^2)^{1/2}.$$

Consequently,

$$\frac{2}{n} = \cos \theta_1 - \cos \theta_2 \ge \frac{1}{\sqrt{2}} (1 - x^2)^{1/2} (\theta_2 - \theta_1)$$

or

$$\theta_2 - \theta_1 \leqslant \frac{2\sqrt{2}}{n} (1 - x^2)^{-1/2}.$$

72

Hence

$$\int_{x-(1+x)/n}^{x+(1-x)/n} \frac{dt}{(1-t^2)^{1/2}} \leqslant \frac{2\sqrt{2}}{n} (1-x^2)^{-1/2},$$

and (2.5) follows from this inequality and (2.6) if $0 \le x \le 1$ and $n \ge 2$. If $-1 < x \le 0$,

$$\int_{x-(1+x)/n}^{x+(1-x)/n} |K_n(x,t)| \, dt = \int_{-|x|-(1-|x|)/n}^{-|x|+(1+|x|)/n} |K_n(-|x|,t) \, dt.$$

Since $K_n(-x, t) = K_n(x, -t)$ we have

$$\int_{x-(1+x)/n}^{x+(1-x)/n} |K_n(x,t)| dt = \int_{-|x|-(1-|x|)/n}^{-|x|+(1+|x|)/n} |K_n(|x|,-t)| dt$$
$$= \int_{|x|-(1+|x|)/n}^{|x|+(1-|x|)/n} |K_n(|x|,t)| dt$$

and (2.5) follows again

LEMMA 3. For $-1 \leq t < x < 1$ and $n \geq 2$.

$$\left| \int_{-1}^{t} K_{n}(x,\tau) \, d\tau \right| \leq \frac{6}{n(x-t)} \, (1-x^{2})^{-1/2} \tag{2.7}$$

and for $-1 < x < t \leq 1$ and $n \geq 2$

$$\left|\int_{t}^{1} K_{n}(x,\tau) d\tau\right| \leq \frac{6}{n(t-x)} (1-x^{2})^{-1/2}.$$
 (2.8)

Proof of Lemma 3. Since

$$K_n(x,\tau) = \frac{n+1}{2} \left(\frac{P_{n+1}(x) P_n(\tau) - P_n(x) P_{n+1}(\tau)}{x - \tau} \right)$$

and $1/(x-\tau)$ for fixed $x \in (-1, 1)$ is an increasing function of τ on [-1, t], -1 < t < x, we find, by the mean-value theorem, that

$$\int_{-1}^{t} K_{n}(x,\tau) d\tau = \frac{n+1}{2} \frac{1}{x-t} \left(P_{n+1}(x) \int_{\xi}^{t} P_{n}(\tau) d\tau - P_{n}(x) \int_{\xi}^{t} P_{n+1}(\tau) d\tau \right).$$

Now, using inequalities (2.1) and (2.2), we get

$$\begin{split} \left| \int_{-1}^{t} K_{n}(x,\tau) \, d\tau \right| &\leq \frac{n+1}{2} \cdot \frac{1}{x-t} \left(\left(\frac{2/\pi}{n+1} \right)^{1/2} \cdot \frac{4(2\pi)^{1/2}}{2n+1} \, (n-1)^{-1/2} \right. \\ &+ \left(\frac{2/\pi}{n} \right)^{1/2} \cdot \frac{4(2\pi)^{1/2}}{2n+3} \, n^{-1/2} \right) \, (1-x^{2})^{-1/2} \\ &\leq \frac{n+1}{2} \cdot \frac{8}{x-t} \left(\frac{(n+1)^{-1/2}(n-1)^{-1/2}}{(2n+1)} \right. \\ &+ \frac{1}{(2n+3)n} \right) \, (1-x^{2})^{-1/2}. \end{split}$$

Since $n-1 \ge (n+1)/3$ for $n \ge 2$, it follows that

$$\left|\int_{-1}^{t} K_{n}(x,\tau) d\tau\right| \leq \frac{2(1+\sqrt{3})}{(x-t)n} (1-x^{2})^{-1/2}$$

and (2.7) follows.

The proof of (2.8) is similar.

3. Proof of Theorem 1

For any fixed $x \in (-1, 1)$ we have

$$S(f, x) = \int_{-1}^{1} f(t) K_n(x, t) dt$$

= $\int_{-1}^{x} (f(t) - f(x - 0)) K_n(x, t) dt + \int_{x}^{1} (f(t) - f(x + 0)) K_n(x, t) dt$
+ $f(x - 0) \int_{-1}^{x} K_n(x, t) dt + f(x + 0) \int_{x}^{1} K_n(x, t) dt.$

Using (1.2), (2.3) and (2.4), this equality becomes

$$S_n(f, x) = \frac{1}{2}(f(x-0) + f(x+0))$$

+
$$\int_{-1}^{1} g_x(t) K_n(x, t) dt - \frac{1}{2}(f(x+0) - f(x-0)) P_n(x) P_{n+1}(x)$$

Hence

$$|S_{n}(f,x) - \frac{1}{2}(f(x+0) + f(x-0))| \\ \leq \left| \int_{-1}^{1} g_{x}(t) K_{n}(x,t) dt \right| + \frac{1}{2} |f(x+0) - f(x-0)| |P_{n}(x) P_{n+1}(x)|.$$
(3.1)

For the second term on the right-hand side of inequality (3.1) we have by (2.1)

$$\frac{1}{2}|f(x+0) - f(x-0)||P_n(x)P_{n+1}(x)| \le \frac{1}{n\pi}|f(x+0) - f(x-0)|(1-x^2)^{-1}.$$

Hence, Theorem 1 will be proved if we establish that

$$\left|\int_{-1}^{1} g_{x}(t) K_{n}(x,t)\right| \leq \frac{28(1-x^{2})^{-3/2}}{n} \sum_{k=1}^{n} V_{x-(1+x)/k}^{x+(1-x)/k}(g_{x})$$
(3.2)

for all $n \ge 2$ and $x \in (-1, 1)$.

To do this we first decompose the integral on the left-hand side of (3.2) in three parts, as follows.

$$\int_{-1}^{1} g_{x}(t) K_{n}(x, t) dt$$

$$= \left(\int_{-1}^{x - (1 + x)/n} + \int_{x - (1 + x)/n}^{x + (1 - x)/n} + \int_{x + (1 - x)/n}^{1} \right) g_{x}(t) K_{n}(x, t) dt$$

$$= A_{n}(f, x) + B_{n}(f, x) + C_{n}(f, x).$$
(3.3)

The evaluation of the middle term is easy in view of Lemma 2. For $t \in [x - (1 + x)/n, x + (1 - x)/n]$,

$$|g_{x}(t)| = |g_{x}(t) - g_{x}(x)| \leq V_{x-(1+x)/n}^{x+(1-x)/n}(g_{x}),$$

and so

$$|B_n(f, x)| = \left| \int_{x-(1+x)/n}^{x+(1-x)/n} g_x(t) K_n(x, t) dt \right|$$

$$\leq V_{x-(1+x)/n}^{x+(1-x)/n} (g_x) \int_{x-(1+x)/n}^{x+(1-x)/n} |K_n(x, t)| dt.$$

Using Lemma 2, we find that

$$|B_n(f,x)| \leq \frac{4}{1-x^2} V_{x-(1+x)/n}^{x+(1-x)/n}(g_x).$$
(3.4)

The evaluations of $A_n(f, x)$ and $C_n(f, x)$ are similar. In the first case let us denote

$$y = x - \frac{1+x}{n}$$
 and $\lambda_n(x, t) = \int_{-1}^t K_n(x, \tau) d\tau$.

We have then

$$A_n(f, x) = \int_{-1}^{y} g_x(t) K_n(x, t) dt = \int_{-1}^{y} g_x(t) d\lambda_n(x, t).$$

By partial integration

$$A_n(f, x) = g_x(y) \lambda_n(x, y) - \int_{-1}^y \lambda_n(x, t) dg_x(t).$$

Hence

$$|A_n(f, x)| \leq |g_x(y)| |\lambda_n(x, y)| + \int_{-1}^{y} |\lambda_n(x, t)| d(-V_t^x(g_x)).$$

Using the fact that

$$|g_x(y)| = |g_x(y) - g_x(x)| \leq V_y^x(g_x)$$

and that by Lemma 3,

$$|\lambda_n(x,t)| \leq \frac{6}{n(x-t)} (1-x^2)^{1/2}$$
 for $-1 \leq t \leq y < x$,

we find that

$$|A_n(f,x)| \leq \frac{6(1-x^2)^{-1/2}}{n} \left(\frac{1}{x-y} V_y^x(g_x) + \int_{-1}^y \frac{1}{x-t} d(-V_t^x(g_x))\right).$$

Since

$$\int_{-1}^{y} \frac{1}{x-t} d(-V_{t}^{x}(g_{x})) = -\frac{1}{x-t} V_{t}^{x}(g_{x})|_{-1}^{y} + \int_{-1}^{y} V_{t}^{x}(g_{x}) \frac{dt}{(x-t)^{2}},$$

it follows that

$$|A_n(f,x)| \leq \frac{6(1-x^2)^{-1/2}}{n} \left(\frac{1}{1+x} V_{-1}^x(g_x) + \int_{-1}^{x-(1+x)/n} V_t^x(g_x) \frac{dt}{(x-t)^2} \right).$$

Replacing the variable t in the last integral by x - (1 + x)/t we find that

$$\int_{-1}^{x-(1+x)/n} V_t^x(g_x) \frac{dt}{(x-t)^2} = \frac{1}{1+x} \int_{1}^{n} V_{x-(1+x)/t}^x(g_x) dt$$
$$\leq \frac{1}{1+x} \sum_{k=1}^{n-1} V_{x-(1+x)/k}^x(g_x)$$

and so

$$|A_{n}(f,x)| \leq \frac{12}{n(1+x)} (1-x^{2})^{-1/2} \sum_{k=1}^{n-1} V_{x-(1+x)/k}^{x}(g_{x})$$
$$\leq \frac{24}{n} (1-x^{2})^{-3/2} \sum_{k=1}^{n} V_{x-(1+x)/k}^{x}(g_{x}).$$
(3.5)

In order to evaluate $C_n(f, x)$, let z = x + (1 - x)/n and $\Lambda_n(x, t) = \int_t^1 K_n(x, \tau) d\tau$. We have then

$$C_n(f, x) = \int_z^1 g_x(t) K_n(x, t) dt = -\int_z^1 g_x(t) dA_n(x, t).$$

Using partial integration we find that

$$C_n(f,x) = g_x(z) \Lambda_n(x,z) + \int_z^1 \Lambda_n(x,t) dg_x(t)$$

so that

$$|C_n(f,x)| \leq |g_x(z)| |A_n(x,z)| + \int_z^1 |A_n(x,t)| \, dV_x^t(g_x).$$

Since

$$|g_x(z)| = |g_x(z) - g_x(x)| \leq V_x^z(g_x),$$

and, by Lemma 3,

$$|\Lambda_n(x,t)| \leq \frac{6}{n(t-x)} (1-x^2)^{-1/2}$$
 for $x < t \leq 1$,

we find that

$$|C_n(f,x)| \leq \frac{6}{n} (1-x^2)^{-1/2} \left(\frac{1}{z-x} V_x^2(g_x) + \int_z^1 \frac{1}{t-x} dV_x^t(g_x) \right).$$

Using partial integration again, we see that

$$\int_{z}^{1} \frac{1}{t-x} dV_{x}^{1}(g_{x}) = \frac{1}{t-x} V_{x}^{t}(g_{x})|_{z}^{1} + \int_{z}^{1} V_{x}^{t}(g_{x}) \frac{dt}{(t-x)^{2}},$$

and the preceding inequality becomes

$$|C_n(f,x)| \leq \frac{6}{n} (1-x^2)^{-1/2} \left(\frac{1}{1-x} V_x^1(g_x) + \int_{x+(1-x)/n}^1 V_x^t(g_x) \frac{dt}{(t-x)^2} \right).$$

Replacing the variable t in the last integral by x + (1 - x)/t, we find that

$$\int_{x+(1-x)/n}^{1} V_x^t(g_x) \frac{dt}{(t-x)^2} = \frac{1}{1-x} \int_1^n V_x^{x+(1-x)/t}(g_x) dt$$
$$\leq \frac{1}{1-x} \sum_{k=1}^{n-1} V_x^{x+(1-x)/k}(g_x).$$

Using this inequality we get

$$|C_{n}(f,x)| \leq \frac{12}{n(1-x)} (1-x^{2})^{-1/2} \sum_{k=1}^{n-1} V_{x}^{x+(1-x)/k}(g_{x})$$
$$\leq \frac{24}{n} (1-x^{2})^{-3/2} \sum_{k=1}^{n} V_{x}^{x+(1-x)/k}(g_{x}).$$
(3.6)

Finally, from (3.3), (3.4), (3.5) and (3.6), we obtain

$$\left| \int_{-1}^{1} g_{x}(t) K_{n}(x,t) dt \right| \leq \frac{4}{1-x^{2}} V_{x-(1+x)/n}^{x+(1-x)/n}(g_{x}) + \frac{24}{n} (1-x^{2})^{-3/2} \sum_{k=1}^{n} V_{x-(1+x)/k}^{x+(1-x)/k}(g_{x}).$$

Inequality (3.2) then follows, since $(1-x^2)^{-1} \leq (1-x^2)^{-3/2}$ and

$$V_{x-(1+x)/n}^{x+(1-x)/n}(g_x) \leq \frac{1}{n} \sum_{k=1}^n V_{x-(1+x)/k}^{x+(1-x)/k}(g_x).$$

References

- 1. E. W. HOBSON, On a general convergence theorem, and the theory of the representation of a function by series of normal functions, *Proc. London Math. Soc.* 6 (1908), 349-395.
- 2. E. W. HOBSON, On the representation of a function by a series of Legendre's functions. *Proc. London Math. Soc.* 7 (1909), 24-39.

- 3. H. BURKHARDT, "Zur Theorie der trigonometrischen Reihen und der Entwicklungen nach Kugelfunktionen," Sitzungsberichte der Königlich. Bayerischen Akademie der Wissenschaften, Mathmatisch-physikalische Klasse, 39, 1909, 10. Abhandlung.
- 4. D. JACKSON, "The Theory of Approximation," American Mathematical Society, New York, 1930.
- 5. R. BOJANIC, An estimate of the rate of convergence for Fourier series of functions of bounded Variation, *Publ. Inst. Math. (Belgrade)* 26 (40) (1979), 57-60.
- 6. G. SZEGÖ, "Orthogonal Polynomials," American Mathematical Society, New York, 1959.