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1. INTRODUCTION

Let Pn(x) be the Legendre polynomial of degree n normalized so that
Pn(1) = 1. Let J be a function of bounded variation on [-1, 1] and

'I

SnCf,x)= Y aiJ)Pk(x)
k=O

the nth partial sum of the Fourier-Legendre series off One has

ak(J) = (k +!)r J(t) Pk(t) dt
-I

and

S,/f, x) = r .f(t) Kn(x, t) dt,
-1

where

'I

Kn(x,t)= Y (k+Dpk(x)Pk(t)
k=O

or

K ( ) = n+ 1 (Pn+l(X)PnCt)-Pn + 1(t)Pn (X»)
n X,l 2 .

x-t

As is well known, the Fourier-Legendre series of a function J of bounded
variation on [-1, 1] converges at every point x E (-1, 1) to
Hf(x + 0) + (f(x - 0» (see [1, The Series of Legendre's Coefficients,
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pp. 388-395; 2; 3D. We are interested here in finding an estimate for the rate
of convergence of the sequence Sn(f, x) to HJ(x +0) +J(x - 0)). Some
results in that direction were obtained in [4, p. 76] for functions of bounded
variation which are either continuous or differentiable in a neighborhood of
the point x.

The main result of this paper can be stated as follows.

THEOREM 1. Let f be a function oj bounded variation on [-1, 1]. Then,
Jor x E (-1, 1) and n >2

where

gAt) = J(t) - J(x - 0),

=0,

= J(t) - f(x +0),

-l~t<x

t=x

x <t~ 1

(1.2)

and ~(g) is the total variation oj g on [a, b].

If J is a continuous function of bounded variation the inequality. (1.1)
becomes

28(1 2)-3/2 n
- X \' VX +O-Xl/k(f)ISnCr, x) - J(x)1 ~ L.. x-(l+x)/k •

n k=l

(1.3)

The right-hand side of (l.1) converges to zero as n --+ 00 since continuity
of gAt) at t = x implies that

~~~(gx) --+ O(tS --+ 0+).

Results of this type for the Fourier series of a 2n-periodic function of
bounded variation on [-Jr, n] were proved in [5].

As far as the precision of estimates (1.1) and (1.3) is concerned, we can
show that (1.3) cannot be improved asymptotically by considering the
Fourier-Legendre expansion of the function f(x) = Ix 11/2 at x = O. We have
for all x E (-1, 1),

1/2 ~ m+ 1 4m + 1 ( )
f(x) = Ixl = 2 ~o (-1) (4m _ 1)(4m + 3) P Zm x
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and so,

Since

( )
_ (_ )m 1. 3 .5 .... (2m - 1)

P2m 0 - 1
2.4.6 ..... (2m)

it follows that

Sn(f,0)-f(0)=2 f 4m+l 1.3.5 (2m-l)
m= n + I (4m - 1)(4m + 3) 2.4 . 6 (2m)

V 1
~ -1":::

m:;+l (4m + 3) y m

1 OCJ 1
~ - Y -----m-

7 m;-;+l m

On the other hand, from (1.3) follows that

28 ~ l/k 56 ~ l/k(f)
I Sn(f, 0) - f(O)1 ~ - L. V-l/k(f) ~ - L. Vo

n k=1 n k=l

Since V~(f) = c)1/2, we have

56 n., 1 102
ISn(f, 0) - f(O)1 ~ - L II:~ -1"::'

n k=1 y k y n

Hence, for the functionf(x) = Ixl1/2 we have

1 102
.~. !C~ISn(f,O)-f(O)I~ . !C.

7y2 y n yn

69

A look at the proof of Theorem 1 shows that the following more general
result is true.

THEOREM 2. Let K n(x, t) be a continuous function of two variables on
[a, b] X [a, b] and let L n be the operator which transforms a function f of
bounded variation on [a, b] into the function

b

Ln(f, x) = f f(t) Kix, t) dt,
a

xE [a,b].



70 BOJANIC AND VUILLEUMIER

If, for a fixed x E (a, b) and n ~ 1, the kernel Kn(x, t) satisfies conditions

(i) Is: Kn(x, r) dr - ~ I~ A~X) and IS: Kn(x, r) dr _ ~ I~ A~X),

xt(b-x)!n

(ii) f IKn(x, r)1 dr ~ B(x),
x-(x-a)/n

(iii) I{ Kix, r) dr I~ n(~~t) (a ~ t <x <b)and

IrKn(x,r)dr I~ n~~~) (a <x < t~b),

where A (x), B(x) and C(x) are positive functions on (a, b), then there exists
a positive number M(f, x), depending only on f and x, such that

ILnef, x) - Hf(x +0) + f(x - 0»1 ~ M(J, x) \-, V~~{~=~V;1(gx)'
n k=l

where, as before,

gx(t) = f(t) - f(x - 0),

=0,

= J(t) -/(x + 0),

2. LEMMAS

a ~ t <x

t=x

x < t ~ b.

The proof of Theorem 1 is based on a number of properties of Legendre
polynomials. These properties are listed and some of them proved in this
section.

LEMMA L We have

x E (-1, 1),

n~ 2, a,p E [-1,1],

(2.1)

(2.2)

1JKn(x, t) dt = 4- ~Pn(x) P"t I (x),
x

r K,,(x, t) dt = ~ + 4p,,(x) P"t I (x).
-I

(2.3)

(2.4)
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Proof of Lemma 1. Most of the properties (2.1 )--(2.4) are well known.
Inequality (2.1) can be found in [4, p. 28] or [6, p. 163]. Inequality (2.2) is a
consequence of the inequality

which can be found in [4, p. 72].
As for the proof of (2.3), observe that

and consequently

.1 I n .1t Kn(x,t)dt=T ?=~o (2k+ I)Pk(x) t Pk(t)dt

1 - x 1 n

=-2-+T f;.1 PiX)(Pk+l(t)-Pk_l(t»I~·

Since Pk+ 1(1) - Pk-I(I) = 0, it follows that

.1 I - x I nLK n(x,t)dt=-2--T (;I Pk(X)(Pk+I(X)-Pk-I(X»

I - x I n~
=--+- '\ (Pk_I(X)Pk(X)-Pk(X)Pk+I(X»

2 2 ;-::1

1 -x 1 1 ( )
=-2-+zPO(X)PI(X)-zPn(X)Pn+1 x.

The proof of formula (2.4) is similar.

LEMMA 2. For x E (-1, 1) and n? 2

.x+(l-x)jn 4
j IKn(x,t)ldt~ I-xz '
x-(l+x)jn

Proof of Lemma 2. Using (2.1) we find that

IKn(x, t)1 = I k~O (k + DPk(x) Pk(t) I

1 3n
~ T + -71:-(-1-_-x-..zc-e)~'""'IZc-e(I---t-=-z)""-I/"""z

(2.5)
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and it follows that
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x+ (I -x)fnJ IKn(x, t)1 dt
x-(l+x)/n

1 3n fX+ (I-x}/n dt
~ - + 2 1/2 2 1/2'n n(l -x ) x-(I+x)/n (1 - t )

(2.6)

To evaluate the integral on the right-hand side of (2.6) suppose first that
o~ x < 1. Then

x+(I -x)/n dt

J 2 l/2=(}2-(}1'
x-(l +x}/n (1 - t )

where cos (}2 = X - (1 + x)/n, cos (}1 = X + (1 - x)/n. If n ~ 2 and 0 ~ x < 1,
we have cos (}2 ~ -~, which means that 0 < () < 2n/3.

To estimate (}2 - (}1' observe that by the mean-value theorem,

where (}J < ~ <°2 ,

If 0 < ~ < n/3 and n ~ 2 we have

sin ~ ~ sin OJ = (1 - cos (}1)1/2(1 + cos Ot)1/2

~ ((I-X) (1-+)) 1/2 (1 +X)l/2

~ ~ (1 - X
2

)1/2.

If n/3 ~ ~ ~ 2n/3, we have

. V3 1 1 2 1/2
sm~~-~ ,r.:,~ ,r.:,(1-x) .

2 y 2 y2

Consequently,

2 1 2) 1/2«(} () )- = cos (}l - cos (}2 ~ _ ,r.:, (1 - x 2 - J
n y 2

or



FOURIER-LEGENDRE SERIES

Hence

f
x+o-x)/n dt 2y12 2-1/2

(1- t2)1/2~-- (l-x ) ,
x-(1 +x)/n n

and (2.5) follows from this inequality and (2.6) if °~ x ~ 1 and n ~ 2.
If -1 < x ~ 0,

x+ (I-x)/n -Ixl +(I + Ixl)/nf IKn(x,t)ldt=J IKn(-lxl,t)dt.
x-(l+x)/n -Ixl-(I-Ixl)/n

Since Kn(-x, t) = Kn(x, -t) we have

.x+(I-x)/n -lxl+(I+!xll!n

J IKn(x, t)1 dt= J IKn(lxl, -t)1 dt
x-(I +x)/n -Ixl-(l-Ixll!n

f
IXI+O-IXI)/n

= IKn(lxl, t)1 dt
Ix!-(l+lxl)/n

and (2.5) follows again

LEMMA 3. For -1 ~ t <x < 1 and n ~ 2.

73

and for -1 < x < t ~ 1 and n ~ 2

Proof of Lemma 3. Since

(2.7)

(2.8)

and 1/(x - r) for fixed x E (-1,1) is an increasing function of ron [-1, t],
-1 < t < x, we find, by the mean-value theorem, that
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Now, using inequalities (2.1) and (2.2), we get

f

tin + 1 1 (( 21n ) 1/2 4(2n) 1/2f KnCx, r) dr ~ -~. -- --. (n _1)-1/2
_ I 2 x ~ t n + 1 2n + 1

+ (2In) 1/2 . 4(2n)I/2 n -1/ 2) (1 _ x2) -1/2
n 2n + 3

&~. _8_ (n +1)-1/2(n _1)-1/2
"" 2 x - t (2n + 1)

1 ) (1 2)-1/2+ (2n + 3)n - x .

Since n - 1> (n + 1)/3 for n ~ 2, it follows that

It I Kn(x,r)dr I~ 2~~~~) (l_X
2
)-1/2

and (2.7) follows.
The proof of (2.8) is similar.

3. PROOF OF THEOREM 1

For any fixed x E (-1, 1) we have

1

S(f, x) = f f(t) KnCx, t) dt
-1

x 1

= J (f(t) - f(x - 0» Kn(x, t) dt +f (J(t) - f(x + 0» Kn(x, t) dt
-I x

+ f(x - 0)r K/I(x, t) dt + f(x + 0)rKn(x, t) dt.
-I x

Using (1.2), (2.3) and (2.4), this equality becomes

S /I(f, x) = Hf(x - 0) + f(x + 0»

I

+f gAt) KnCx, t) dt - Hf(x + 0) - J(x - 0» Pn(X) P11+ 1(x).
-I
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ISn(f, x) - i{J(x +0) +J(x - 0))1

< \fl gx(t)Kn(x,t)dt !+!IJ(X+0)-J(X-0)IIPn(X)Pn+1(X)I. (3.1)

For the second term on the right-hand side of inequality (3.1) we have by
(2.1 )

1! IJ(x + 0) - J(x - O)IIPn(x) Pn+j(x)1 <-IJ(x + 0) - J(x - 0)1(1 - X2)-I.
nn

Hence, Theorem 1 will be proved if we establish that

(3.2)

for all n? 2 and x E (-1,1).
To do this we first decompose the integral on the left-hand side of (3.2) in

three parts, as follows.

• 1I gAt) Kn(X' t) dt
. -I

(J
.x-(I+x)fn fx+o-x)/n fl )

= + + gx(t) Kn(x, t) dt
-I x-(l+x)fn x+(l-x)/n

(3.3)

The evaluation of the middle term is easy in view of Lemma 2. For
tE [x- (1 +x)/n,x + (l-x)/n],

and so

IBn(f,x)l= If+(I-X)/n gx(t)Kn(X,t)dt!
x-O +x)/n

.x+(I-x)fn
<V;~g~;Y;~( gx) j IKix, t)1 dt.

x-o +x)/n

Using Lemma 2, we find that

(3.4 )
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The evaluations of An(f, x) and Cn(f, x) are similar. In the first case let us
denote

l+x t

Y = X - -- and An(X, t) = f Kn(x, r) dr.
n -1

We have then

An(f, x) = r gAt) Kn(x, t) dt = r gAt) dAn(X, t).
-1 -1

By partial integration

An(f, x) = gAy) An(X, y) - r An(X, t) dgx(t).
-1

Hence

Using the fact that

and that by Lemma 3,

6 2 1/2
IAn(X, t)1 ~ ( ) (1 -x )nx-t

we find that

for -1 ~ t ~ Y <x,

Since

it follows that
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Replacing the variable t in the last integral by x - (1 +x)/t we find that

and so

12 n-l

I
2 -1/2 '\-' x (IAn(f,x):::;; (1+ )(I-X) ..... VX -(I+xl/kgx)

n x k=1

77

24 2 - 3/2 \-- x (:::;; - (1 - x ) L... V~_(1 +x)/k gx)·
n k=l

(3.5)

In order to evaluate Cn(f, x), let z = x + (1 - x)/n and An(x, t) =
J: Kn(x, r) dr. We have then

1 I

Cn(f, x) =f gx(t) Kn(x, t) dt = - f gAt) dAn(x, t).
z z

Using partial integration we find that

Cif, x) = gAz) An(x, z) +rAn(x, t) dgAt)
z

so that

I

ICn(f, x)l:::;; IgAz)IIAn(x, z)1 +f IAn(x, t)1 dVAgx)·
z

Since

and, by Lemma 3,

for x < t:::;; 1,

we find that

I 6 2 - 1/2 ( 1 fI 1 TTl )ICnCf, x) :::;; - (1- x ) -- V:(gx) + - d" x(gx) .
n z-x zt-x
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Using partial integration again, we see that

and the preceding inequality becomes

Replacing the variable t in the last integral by x + (1 - x)/t, we find that

I . dt 1 n

J ~(gX> ( )2 =--J VX+(l-X)/I(g) dt
X+(l-x)/n t-x I-x I x x

1 n-I
& __ \' VX+(l-X)/\g)
'<::: 1- X k"7:1 x x .

Using this inequality we get

leif, x)1 ~ 12 (1_X 2)-1/2 nIl V;+(l-x)/k(gx)
n(1-x) k=1

~ 24 (1- X 2)-3/2 ±V~+(l-X)/k(gx)'
n k=1

Finally, from (3.3), (3.4), (3.5) and (3.6), we obtain

Inequality (3.2) then follows, since (1 - x 2
) -I ~ (1 - x 2

) - 3/2 and

Tr.<+(I-X)/n( )./ 1 \-, Tr.<+(l-X)/k( )
"x-(I +x)/n gx "'::: -..;.- "x-(l +x)/k gx .

n k=1
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